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Abstract

Purpose — This paper aims to directly extend the homotopy perturbation method to study the
coupled Burgers equations with time- and space-fractional derivatives.
Design/methodology/approach — The realistic numerical solutions were obtained in a form of
rapidly convergent series with easily computable components.

Findings — The figures show the effectiveness and good accuracy of the proposed method.
Originality/value — The paper obtains realistic numerical solutions in a form of rapidly convergent
series with easily computable components. It shows the effectiveness and good accuracy of the
proposed method.
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1. Introduction

In recent years, fractional differential equations are stimulated by new examples of
applications in fluid mechanics, viscoelasticity, mathematical biology, electrochemistry
and physics. For example, the nonlinear oscillation of earthquake can be modeled with
fractional derivatives (He, 1999a), and the fluid-dynamic traffic model with fractional
derivatives (He, 1999b) can eliminate the deficiency arising from the assumption of
continuum traffic flow. Considerable interest in fractional differential equations has
been stimulated due to their numerous applications in the areas of physics and
engineering (West ef al,, 2003). That is because of the fact that, a realistic modeling of a
physical phenomenon having dependence not only at the time instant, but also the
previous time history can be successfully achieved by using fractional calculus, i.e. the
theory of derivatives and integrals of fractional (noninteger) order.

Fractional differential equations have been caught much attention recently due to
exact description of nonlinear phenomena. Recent interest mainly covers in analytical
approaches to the fractional equations as this paper did, and synchronization for
fractional systems as did in (Yu et al., 2009; Sheu et al, 2009; Xu et al., 2008). No
analytical method was available before 1998 for such equations, even for linear
fractional differential equations. In 1998, the variational iteration method (VIM) was
first proposed to solve fractional differential equations with greatest success (He, 1998).
Many authors found VIM as an effective way to solving fractional equations, both
linear and nonlinear (Odibat and Momani, 2006; Das, 2008). Momani and Odibat (2007)
Ganji et al. (2008) and Yildirim (2009a, b) applied the homotopy perturbation method
(HPM) to fractional differential equations and revealed that HPM is an alternative
analytical method for solving fractional differential equations. Momani et al. (2008) and
Odibat and Momani (2008) compared solution procedure between VIM and HPM.
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Generally the differential equations are valid for continuous matter, while its fractional
partner for discontinuous case, see Equation (6) in (He, 2008c).

The space- and time-fractional coupled Burgers equations have recently been
considered by Chen and An (2008) using Adomian decomposition method. The study to
coupled Burgers equations is very significant for that the system is a simple model of
sedimentation or evolution of scaled volume concentrations of two kinds of particles in
fluid suspensions or colloids, under the effect of gravity (Nee and Duan, 1998). It has been
studied by many authors by different methods (Esipov, 1995, Abdou and Soliman, 2005,
Dehghan et al., 2007). Especially recently, Dehghan et al (2007) have obtained a good
numerical results by using Adomian—Pade technique. However, as we know, the study for
the coupled Burgers equations with time- and space-fractional derivatives of this form:

ou  &u 5 0u  O(uv)

TR A T (1.1)
My 0%y O(uw)
o o ax (12)

by the HPM has not been investigated. Here, aq, e and (1, 32 are the parameters
standing for the order of the fractional time and space derivatives, respectively, and
they satisfy 0 < a1, a9, 81, 82 < 1and ¢t > 0. In fact, different response systems can be
obtained when at less one of the parameters varies. When a1 = as = 31 = 32 = 1, the
fractional equations reduce to the classical coupled Burgers equation.

The objective of this paper is to extend the application of the HPM to obtain analytic
and approximate solutions to the coupled Burgers equations with time- and space-
fractional derivatives. The HPM was first proposed by the Chinese mathematician Ji-Huan
He (1999b, 2000, 2003, 2004, 2005a, b, 2006a). The essential idea of this method is to
introduce a homotopy parameter, say p, which takes values from 0 to 1. When p = 0, the
system of equations usually reduces to a sufficiently simplified form, which normally
admits a rather simple solution. As p gradually increases to 1, the system goes through a
sequence of deformations, the solution for each of which is close to that at the previous
stage of deformation. Eventually at p = 1, the system takes the original form of the
equation and the final stage of deformation gives the desired solution. One of the most
remarkable features of the HPM is that usually just few perturbation terms are sufficient
for obtaining a reasonably accurate solution. Considerable research works have been
conducted recently in applying this method to a class of linear and nonlinear equations
(Yildinm and Ozis, 2007; Yildirim, 2008a, b, d; Yildirim, 2010; Siddiqui et al, 2008;
Cveticanin, 2006; Biazar and Ghazvini, 2007, 2008, 2009; Dehghan and Shakeri, 2007, 2008z;
Shakeri and Dehghan, 2007, 2008). The interested reader can see the references (He, 2006b,
2006¢, 2008a, 2008b; Ozis and Yildirim, 20074, b; Yildirim, 2008c; Yildirim and Agirseven,
2009) for last development of HPM. Also references (Dehghan and Shakeri, 2008b, c;
Dehghan and Salehi, 2009; Dehghan and Shakeri, 2009, Dehghan and Saadatmandi, 2009;
Dehghan and Manafian, 2009; Soltanian ef al, 2009; Saadatmandi ef al,, 2009; Dehghan et
al., 2007, 2009) help the readers to know the recent advances in the literature.

The paper is organized as follows. In section 2, some necessary details on the
fractional calculus are provided. In section 3, the coupled Burgers equations with time-
and space- fractional derivatives are studied with the HPM and the numerical results
are graphed to show the efficiency as well as the accuracy of the approximate results
achieved. Finally, conclusions are followed.



2. Fractional calculus
We give some basic definitions and theories from the fractional calculus which are used
further in this paper.

Defimition 2.1. A real function f(x),x > 0, is said to be in the space C,, u € R if there
exists a real number p(> p), such that f (x) = x2fi(x), where f1(x) € C[0, 00), and it is
said to be in the space C' if and only if /™ € C,,m € N.

Definition 2.2.  The Riemann-Liouville fractional integral operator of ovder o > 0, of a
functionf € C,, pp > —1,1is defined as

1 (* .

T (x :—J x—0""f(dt, a>0, x>0,

) =gy | - 070
JF (%) = f(x).

Properties of the operator /¢ can be found in references (Podlubny, 1999; Miller and

Ross, 1993; Samko et al., 1993; Oldham and Spanier, 1974), we mention only the
following. Forf € C,,u > —1, 0, 4 > O0andy > —1:

< JTf () =] (v);

< JJf(x) =]°]°f (x);and

e ] = (D(y+1)/(D(a+ 7+ 1),
The Riemann-Liouville derivative has certain disadvantages when trying to model real
world phenomena with fractional differential equations. Therefore, we shall introduce a

modified fractional differential operator D* proposed by Caputo in his work on the
theory of viscoelasticity (Luchko and Gorneflo, 1998).

Definition 2.3.  The fractional derivative f (x) in the Caputo sense is defined as:

o

form—1<a<m, meN,x>0,feC".
Also, we need here two of its basic properties.

D (x) =" °D"f (x) = (x — "0 (p)dt, (2.1)

Lemma 21. If m—-1<a<m, meN and feCZ’,uz—l, then

D (x) = £ (x), and,

3

-1 »
JoDf(x) =f(x) =) P (0

0

, x>0.

=
I
=

The Caputo fractional derivatives are considered here because it allows traditional
initial and boundary conditions to be included in the formulation of the problem. In this
paper, we consider the coupled Burgers equations with time- and space-fractional
derivatives, and the fractional derivatives are taken in Caputo sense as follows.
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Definition 2.4. For m to be the smallest integer that exceeds o, the Caputo time-
fractional derivative operator of order o > 01s defined as:

N 0%u(x,t
Dputx, ) = LD
2.2)
1 ! mfaflamu(xv T)
_ F(ifn—a)JO(tT) WdT7 fOTm*1<O[<m
Mu(x,t)

87, fOV a=meN
For more information on the mathematical properties of fractional derivatives and
integralsone can consult the mentioned references.

3. Numerical examples
3.1 Numerical solutions of the time-fractional coupled Burgers equations

Firstly, we consider the following form of time-fractional coupled Burgers equations
(Chen and An, 2008):

Diu = Lou + 2ulu — Ly(uwv) (0 < a<1)

5 (3.1)
Djv=Lyw+2vLw— Ly(uv) (0<p<1)
with the initial condition:
u(x,0) = f(x) = sin(x) (3.2)
v(x,0) = g(x) = sin(x) |
the exact solutions of Equation (3.1) for special case(a = 8 = 1) is:
u(x,t) = e~ !sin(x)
{ v(x,t) = e 'sin(x) (33)
We construct the following homotopy:
o°u  Ouy (0%u ou  O(uv) 0uy
oo o L (axz T or o (3.4)
v 9%y v ov  Ouv) 0%y
W‘W”(W“va‘—ax _W) (3:5)
Assume the solution of Equations (3.4) and (3.5) to be in the form:
U=+ pus + p*us 4+ pluz 4 - - -- (3.6)

v =1y +pv1 + g+ poug e (3.7)



Substituting Equations (3.6) and (3.7) into Equations (3.4) and (3.5) and equating the
coefficients of like powers of p, we get following set of differential equations:

0 o uo o0 A

b 57 3 =0 (3.8)
0%y 0%
0. %0 Y% _
S5~ 5 =0 (3.9)
uy  Ou Ouy  O(uovy)
1,07 _ 07Uo o _ Ao
P gt = TP T (3.10)
(9/61)1 8200 81)0 8(%01)0)
1,901 _ 0o 9% _
R T T TR (3-11)
uy  Pu ou ouy  Oupvy)  O(uvp)
0 0%z 0wy Ouy Oug  O(ugvy)  d(urvg
b ot ox? + 2uo ox +2m ox ox ox (3.12)
aﬁvz 821}1 81)1 8110 6(’[)0%1) 8(1]1%0)
2,072 O opy Ty o T - 1
o7 o2 T T ey T T ox o BB
Solving the above equations, we obtain:
up = f(x), wvo=g(x), (3.14)
tUt
u —fl(x)m (3.15)
i
20 ta+6
us = fo(x) a1 + f3(x) NCEES)) (3.17)
t2;8 taJrﬂ 318
Uz—gz(x)m‘ng(x)m (3.18)

where,
f(x) = Sin(x)a fl(x) :fxx + fox _fgx _fxga
fZ(x) :flxx + 2fflx + Zf]fx _flxgv fB(x) = _fxgla
g(x) =sin(x), g1(x) = gur +288: — 8fx — &1,
22(%) = Quex + 29810 + 28180 — Q1 S, &3(%) = —f1 8,

then we can obtain numerical solutions of time-fractional coupled Burgers
Equation (3.1) in series form:
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Figure 1.

The surface shows the
solution u(x, t) for
Equations (1) and (2)
when o = 1

o 20 a+f3

u(x,t) =f +f1(x)m+f2(x)m+f3(x)m+ (19)
B 28 a+p

0(rt) = £+ 86 F 7+ EO T A0 Tt @)

In order to verify the efficiency and accuracy of the proposed HPM for the time-fractional
coupled Burgers equations, we draw figures for the numerical solutions with
a=02506=05a=0.756=09 as well as the exact solutions (3.3) when
a = 3 = 1. From the Figures 1 and 2, we can know the series solutions converge rapidly.
That’s to say a good approximation is achieved by using N-term approximation of the
HPM solutions. The accuracy of the numerical solutions obtained depends on how many
terms we choose. It is evident that the efficiency of this approach can be dramatically
enhanced by computing further terms of #(x, #) and v(x,#) when the HPM is used.

3.2 Numerical solutions for the space-fractional coupled Burgers equations

Now, we take the space-fractional coupled equations as another example to illustrate
the efficiency of the method. As the main method is the same as the above, we will omit
the heavy calculation and only give some necessary expressions.

Notes: (a) Exact solution (3); (b) approximate solution (19); (¢) |tgy—ttgp,



i
N

Notes: (a) &= 0.25; (b) B=0.5; (¢) =0.75; (d) B=0.9

We consider the operator form of the space-fractional coupled Burgers equations (Chen
and An, 2008):

Dy = Loyu + 2uDfu — Le(uv) (0 < o <1)

Dw = Ly + 20D%v — Ly(uwv) (0 < < 1) (21)
with the initial condition:
u(x,0) = f(x) = »*
ik Z2)
We construct the following homotopy:
ou  Ouy , (u 0%u  Ouv  Ouy
5‘5—1’(@”“@‘%‘5) (23)
w oy (0P B duv Oy
E‘W—f(w”“w—%‘ﬁ) (24)
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Figure 2.

The surface shows the
solution u(x, f) and v(x, t)
for Equations (1) and (2)
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Substituting Equations (6) and(7) into Equations (23) and (24) and equating the

coefficients of like powers of p, we get following set of differential equations:

Buo 8%0
0.0uo _ Ouy _
b= ot ot
o000 _
s ot
oy, u 0“uy  A(uovo)
1, 0m _ 9ug o 9(uovo
R T TRl P

1. on _ 821}0 % 8%0 _ 8(%01)0)
ot o2 T oxe ox

Solving the above equations, we obtain:

U :x2, Vo :xs,
— 4 A—a
up = (2 -5x" 4+ frxr )t

v = (6x — 5x* 4+ g1 P\t
12 )
y = Q‘Zx6‘2“ + x5 4+ A 4 fx™ P 42005 +104° — 72x2)

12 ; ]
= (g7 + gox™ P 4 gua™7 + gsx® + 200 4 10x° — 7247)

0222

0 =2 =g W= (r(34— o ZFF((SS—_O(T)))[“

2 2 fw=(-a)B-

- R B 12 2r(7-0)
g) =2, gi(r)= ra—p £W= (r(4 —5)  T7-9) )gl’

L, 60 240
gg(.%') gl_r<4_6)_r(5_ﬁ)v

L2 7
r2-p) THE-p)

gu(x) = (6 - B)(5— B)ar

g5(%) = (a —4)f1.



Then we obtain the numerical solutions of space-fractional Equation (21) in series HOmOtOpy

form:

u(x,t) = 2% + (2 — 50t + fr =)t

perturbation
method

2
+ % (A2 4 o170 4 £ 4 fox™ 7 4 2005 + 1065 — 724%) + - -

L o,
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Notes: (a) o= 0.25; (b) B=0.5; (c) = 0.75; (d) B=0.9; () = 1: () f=11

(34) 905

Figure 3.

The surface shows the
solution «(x, t) and v(x, 1)
for Equations (21) and (22)
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v(x,1) = 2% + (6x — 5x* + g0

2 p p
+ E (g2x97253 —|—g3x7*ﬂ +g4x47*" _|_g5x67(y + 20.7(6 + 10x5 _ 72x2) 4
(35)

In order to verify the efficiency and accuracy of the proposed HPM for the space-
fractional coupled Burgers equations, we draw figures for the numerical solutions with
a=0.250=05a=0.7506=09and a = 8 = 1. From the Figure 3, we can know
the series solutions converge rapidly.

4. Conclusion

In this paper, by using HPM, we successfully constructed the explicit numerical solutions
for the time- and space-fractional coupled Burgers equations with initial condition. We
show that the method is straightforward without any restrictive assumptions and special
techniques and the continuity of the solution depends on the time- and space-fractional
derivatives and the convergent speed is related with terms. Also the HPM is an efficient
and powerful method in solving a wide class of equations, in particular, coupled fractional
order equations. Generally the results can well explain some unsolved phenomena in
porous flow or porous heat problems especially in nano scales, for example, unusual
strength, high surface energy, high surface reactivity, high thermal and electric
conductivity (Wu et al., 2009; Chen et al, 2009; Mahmood et al,, 2008). The main reason is
that the porous is discontinuous and can be described using fractional equations.
A disadvantage of this new approach is to need an initial value. This technique can not be
employed if the problem does not include initial and boundary conditions.
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